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C H A P T E R  1  

Introduction 

RESEARCH BACKGROUND 
The safety of the vehicular passengers, particularly in wet weather, is dependent upon friction 
characteristics between the vehicle tires and the pavement surface. While new concrete pavements often 
demonstrate adequate friction immediately after construction (e.g., by means of surface tinning, diamond 
grinding, and/or grooving), over time the pavement surface is polished by repeated tire abrasion, resulting 
in loss of skid resistance and potential for compromised safety to travelers.  

The friction of concrete pavements has been described to depend upon macro- and micro-texture. 
Macro-texture refers to roughness on the centimeter scale. It reduces the potential for separation of the tire 
and pavement surface due to hydroplaning and is known to influence friction at higher travel speeds. On 
the other hand, micro-texture is at a smaller scale (mm and µm) and predominates the skid resistance 
behavior at both lower and higher speeds [1]. Limited past research is available on factors that control the 
resistance of concrete pavements against loss of friction and texture. It is generally known that polish 
resistance depends on the mineralogy and properties of the aggregates as well as the composition of the 
cement binder. In addition, surface preparation of concrete, including the type and quality of finishing and 
curing, is important. Therefore, to understand the loss of frictional properties of concrete pavements as a 
function of time, many factors, such as resistance of aggregates to polishing, pavement surface texturing 
technique and characteristics, and concrete mixture proportions, should be considered [2,3]. 

Recently, several studies have attempted to establish regression correlations linking these input 
factors (concrete mix design, aggregate polishability, and pavement surface treatment) with the time-
dependent texture and frictional properties of concrete pavements [4–7]. These studies have relied on 
accelerated pavement polishing methods, such as the Wehner-Schulze device, the three-wheel polishing 
device, and model mobile load simulator (MMLS-3); and measuring the texture and friction of the tested 
pavements as a function of the number of polishing cycles. This approach is necessary to collect a sufficient 
body of experimental data. However, these experiments are costly and labor-intensive and may have poor 
generality, meaning that additional testing may be required if different materials or mixture proportions are 
used. However, these past studies have generated a body of experimental data that can be used for the 
development of more robust prediction algorithms such as via machine learning. 

Machine learning (ML) can be employed to resolve highly complicated relationships between 
inputs (concrete mixture proportions, ingredient material properties, surface treatment, degree of polishing) 
and output variables (friction and texture) by improving the generality of the prediction model. ML 
algorithms that have become available in recent years provide a means for developing predictive models 
that can explain an inherent nonlinear relationship between inputs and outputs. The artificial neural network 
(ANN), which is one of the most powerful ML algorithms, has been successfully used in the field of civil 
engineering, including such applications as damage assessment [8–10], prediction model for concrete 
mechanical properties [11–13], and concrete mixture optimization [14,15]. In a concrete/asphalt pavement 
study, the ANN-based model showed good performance for evaluating surface roughness [16,17], 
deterioration [18,19], or lifecycle performance [20]. The success of these past studies suggests that ANN 
models may be well suited for predicting the time-dependent friction and texture of concrete pavements by 
using the available experimental data from accelerated pavement polishing studies.  
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RESEARCH OBJECTIVES 
The objective of this study is to develop an ANN-based model for predicting the long-term friction and 
texture of plain and ground/grooved concrete pavements. First, a database is constructed using the available 
data from the literature. This database contains more than 200 data points of concrete mixture proportions, 
aggregate types, polishing resistance, pavement surface friction measured using the Dynamic Friction 
Tester, DFT (ASTM E1911-19), and pavement surface texture measured using the Circular Track Meter, 
CTM (ASTM E2157-15) [21,22]. The latter two parameters are inputted in the model as a function of the 
number of the accelerated polishing cycles. These prediction results are used for determining the 
international friction index (IFI) parameters and equivalent skid number measured by locked-wheel trailer 
test (ASTM E274-15) [23]. With the use of this equivalent skid number, the ANN model is extrapolated to 
investigate the long-term frictional properties of pavements beyond the accelerated testing ranges provided 
in the literature. Based on the predicted long-term friction results, the terminal friction of concrete pavement 
is estimated using the normalized standard deviation-based method. It is expected that the application of 
this ANN-based model enables designers and contractors to construct high-quality concrete pavements with 
long-term friction retention.  

LITERATURE REVIEW 
This section mainly focuses on a literature review of pavement friction and texture and the ANN model. A 
basic knowledge of pavement friction and texture is first introduced. Characteristics of surface texturing 
techniques (e.g., grinding and grooving), which improve the frictional properties of pavements, are also 
provided. Additionally, various testing methods and devices for measuring pavement friction and texture 
are introduced, as well as equipment for accelerated polishing, which simulate wearing of pavements. Lastly, 
a literature review of ANN is presented.  

Pavement Frictional Properties 
Pavement friction (also known as “skid resistance”) is the resistive force resulting from the interaction 
between the vehicle tire and the pavement surface, as shown in Figure 1. The resistive force is generally 
characterized by the non-dimensional friction coefficient (µ). The friction coefficient is the ratio of 
tangential force (F) at the contact area to the normal force on the tire (Fw) [1].  

 

 

In a tire-pavement contact area, the friction is influenced by the complex interaction of two main 
mechanisms of adhesion and hysteresis (see Figure 2). Adhesive force is one of the components influencing 
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tire-pavement friction in dry weather and at low-speed. This adhesion friction is generated by the tire 
rubber-pavement interaction at a micro-level (micro-texture), such as fine aggregate particles, when the tire 
is pressed into pavement surface [24]. Hysteresis force is developed by the bulk deformation of tire rubber 
when it contacts with pavement surface [25]. During the tire relaxation, some of the stored energy is lost in 
the form of heat (hysteresis), while the remaining energy is recovered in the form of mechanical energy. 
This hysteresis force is highly influenced by the macro-texture of pavement. These two components of skid 
resistance are related to the key properties of road pavement surfaces [1,26].  

 

 
Figure 2. Mechanisms of adhesion and hysteresis [1,25,27]. 

Texture on pavement means the irregularities of pavement surface: “deviations of the pavement 
surface from a true planar surface” [28,29]. The deviations can be identified at different levels of 
wavelength (λ) and amplitude (A) of its components. It should be noted that the wavelength means the 
length between physically repeating parts (pavement surface features) [1]. According to the Permanent 
International Association of Road Congress (PIARC), the textures can be categorized as follows (see 
Figure 3):  

 
- Micro-texture (λ < 0.5 mm, A = 1–500 µm): Surface roughness at the microscopic level. 
- Macro-texture (λ = 0.5–50 mm, A = 0.1–20 mm): Surface roughness quality defined by the mixture 

properties, and the surface treatment method of finishing/texturing (e.g., burlap drag, tinning, 
diamond grinding, grooving). 

- Mega-texture (λ = 50–500 mm, A = 0.1–50 mm): Texture with wavelengths in the same order of 
magnitude as the pavement–tire interface. It is largely defined by the distress or defects on the 
pavement surface (e.g., potholes).  

 
The properties of pavement texture can be influenced by aggregate size and gradation, aggregate 

morphology, mix proportions, surface texture dimensions (e.g., spacing between grooves), and texture 
orientation. However, it is well established that micro-texture is highly dependent on the roughness of 
individual coarse and fine aggregate particles, whereas the large irregularities of a road surface (coarse-
scale) influence the macro-texture of pavement [30]. 
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Figure 3. Illustration of various texture ranges that exist for a given pavement surface [6]. 

It has been widely known that various interactions between tire and pavement, such as dry or wet 
weather friction, tire wear, noise, and ride quality, are influenced by the degree of pavement texture (see 
Figure 4) [28]. As, the macro-texture of the pavement is a key parameter affecting the drainage capacity as 
well as the driving safety of wet pavements, the characterization of macro-texture is one of the important 
tasks to evaluate the frictional properties of pavements [31]. On the contrary, micro-texture of pavements 
influences the handling of vehicles at low speed or in dry weather.  

 

 
Figure 4. Relationship between texture and characteristics of the pavement surface [28]. 

In recent years, pavement surface texturing techniques have been applied to improve the ride 
quality and reduce pavement-tire noise. Diamond grinding and grooving is one of the commonly used 
surface treatment methods in new construction and in rehabilitation of existing pavements (see Figure 5). 
Using diamond grinding, the surface irregularities of a road caused by construction work or traffic loading 
over time can be removed [29]. Accordingly, the smoothness and surface friction of pavement can be 
improved or restored. The characteristics (texture) of the diamond ground surface depend on the cutting 
depth and spacing between the grinding blades, as shown in Figures 6 and 7. Diamond grooving creates 
parallel channels on the pavement surface to improve water drainage and to reduce the hydroplaning 
potential [29]. Two types of longitudinal and transverse grooving are commonly used. Longitudinal 
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grooving improves lateral friction and is generally used for decreasing the hydroplaning potential and 
improvement of curve tracking [32]. Transverse grooving provides better water drainage, but noise could 
be increased [32]. A schematic diagram of diamond ground and grooved pavement is provided in Figure 
6. One of the texturing methods—Next Generation Concrete Surface (NGCS), developed at Purdue 
University—has also been implemented due to its advantages of reducing road noise as well as 
improvement of macrotexture. As can be seen in Figure 5 (c), texture of NGCS is very similar to 
ground/grooved pavement, but NGCS cuts deeper grooves (1/8 in. or deeper) at a wider spacing interval 
(around 1/2 in.) [32]. This can be achieved by using different types of diamond blades, as shown in Figure 
7. It has been reported that the application of NGCS on pavement is helpful for reducing tire-pavement 
noise as well as improving frictional performance [33]. Even though various advantages of 
grinding/grooving have been introduced, it should be noted that the long-lived frictional properties of 
ground/grooved pavement can only be achieved with the use of hard and durable aggregates.  
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(a)                                                                                        (b) 

 

 
(c) 

Figure 5. Examples of (a) ground, (b) grooved, and (c) NGCS pavement [32,34]. 

 
Figure 6. Schematic diagram of diamond-ground/grooved concrete. 
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(a)                                                                                 (b) 

 

 
(c) 

Figure 7. Heads of (a) grinding, (b) grooving, and (c) NGCS [34]. 

Measurement of Pavement Friction  
A number of testing methods and devices have been developed to measure pavement friction. The British 
pendulum test (BPT, ASTM E303), dynamic friction test (DFT, ASTM E1911), and locked-wheel test 
(ASTM E274) have been extensively used, as shown in Figure 8.  
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(a)                                                                             (b) 

 

 
(c) 

Figure 8. Test methods for measuring pavement friction: (a) British pendulum test [35],  
(b) dynamic friction test, and (c) locked-wheel test [36]. 

British pendulum test (BPT, ASTM E303) is one of the devices commonly used for measuring 
skid resistance (caused by macro-texture) of pavements in laboratory and field testing due to its good 
portability and simple testing method. This equipment consists of a tripod frame with a rubber slider on the 
head swing arm (pendulum). This device measures the loss of kinetic energy when the swing arm passes 
over the surface of tested samples [32]. As the loss of kinetic energy is converted to a frictional force, 
friction of normal and ground/grooved pavement can be determined. A high BPT number indicates a high 
skid resistance of the test sample. However, this testing method measures a relatively small testing area of 
road or concrete samples. Thus, the results from the British pendulum test may not represent the frictional 
properties of the road or testing sample. This testing device can also be used for analyzing frictional 
properties of coarse aggregates. 

Likewise, the dynamic friction test (DFT, ASTM E1911) is a method extensively used for field 
and laboratory testing. Because this test is not highly influenced by the operator or presence of wind, its 
good repeatability and reproducibility have been reported [25]. DFT measures the coefficient of dynamic 
friction (caused by micro- and macro-texture) at different testing speeds from 0 to 80 km/h. DFT measures 
the torques applied on three small circular rotating pads. This torque is converted to a dynamic friction 
value. During the test, water is continuously supplied to the surface to simulate wet conditions.  

The locked-wheel test (ASTM E274) is one of the commonly used methods in the United States 
for skid resistance of full-scale pavements. This test automatically records the frictional data using a locked-
wheel trailer system [36]. The instrumented trailer with a locked-wheel system is towed behind the vehicle 
at a speed of 64 km/h or 96 km/h. During the test, water is sprayed in front of the test tire to simulate a wet 
pavement condition. Then the resistive drag force over a pavement surface under the constant speed is 
measured for 1–3 seconds. In this test, the locked-wheel trailer can be equipped with either a ribbed tire 
(ASTM E501) or a smooth tire (ASTM E524). The results of the locked-wheel test are reported as a friction 
number (FN) or skid number (SN), which can be expressed as: 

 
𝐹𝐹𝐹𝐹(𝑆𝑆) = 100 × 𝐹𝐹/𝑊𝑊 
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where S represents the velocity of the test tire, F represents the sum of all horizontal force applied to the 
tire, and W indicates the dynamic vertical load applied to the tire. 

Measurement of Pavement Texture  
For the measurement of pavement texture (see Figure 9), the conventionally used volumetric sand patch 
test (ASTM E965) and circular track meter test (ASTM E 2157) have been used. More recently, with the 
advancement of laser scanning technology, various types of pavement texture scanning devices using laser 
scanner have been developed [28,37,38]. 
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Figure 9. Test methods for measuring texture of pavement: (a) volumetric sand patch test [39], (b) 
circular track/texture meter [21], and (c) 3d laser scanning device mounted on vehicle [38]. 

The sand patch test (ASTM E965) is a volumetric technique measuring the macro texture of the 
pavement surface. This volumetric sand patch method is most commonly used to measure texture of 
pavement due to its simple and convenient testing procedure. This test consists of (1) spreading a material 
having uniform particles (e.g., sand or glass beads) of already known volume on a clean and dry pavement 
and then calculating the average depth of the macro-texture based on the area covered by the material. In 
specific, the diameter of the circle is measured on four axes and the average value is calculated. This value 
is then used to calculate the mean texture depth (MTD). According to ASTM E 965, the size of material 
(sand or glass bead) shall be graded to have a minimum of 90% by weight passing a No. 60 sieve and 
retained on a No. 80 sieve. The volume of material used for the test should be higher than 25 mL. Recently, 
glass beads are more preferred than sand because of the uniform spherical shape of glass beads [40].  

The circular track meter (CTM) measures the mean profile depth (MPD) of a pavement 
macrotexture (ASTM E2157) utilizing a laser displacement sensor. The circular track meter can be applied 
in laboratory and field testing. The laser sensor is mounted on an arm that rotates in a circular path (284 
mm in diameter), which is divided into eight segments for calculating each MPD. The average values of all 
eight segments indicate the mean profile depth of the testing sample. The laser spot size is 70 μm and the 
vertical resolution is 3 μm. The mean profile depth obtained from CTM has been shown to correlate well 
to the mean texture depth measured with the sand patch test [21,40,41]. Analysis of the circular track meter 
allows more detailed investigation of the texture to determine what is producing the texture and whether it 
is positive (raised), negative (grooved) or neutrally textured. 

With significant advancements in laser technology, many kinds of laser scanning devices for the 
analysis of road surface condition have been developed. Because of the advantage of automated pavement 
data collection via 3D laser scanning system, laser scanning devices have been used for pavement crack 
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identification, macro-texture, skid resistance, and etc. [28,41–43]. The 3D laser scanning system mounted 
on the vehicle has effectively characterized the various pavement distresses, such as cracks, road markings, 
rutting, potholes, and textures [38,41].  

Accelerated Polishing Devices 
During the entire lifecycle of a pavement, the surface of pavement is continuously polished due to a traffic 
load. The polishing rate is typically dependent on the traffic load, which takes a long time. Thus, in order 
to simulate wearing and polishing of pavements, laboratory-scale accelerated polishing devices have been 
developed and used since research on skid resistance started in the 1960s (see Figure 10).  
 

- British Polishing Wheel (ASTM D3319) 
- Michigan Indoor Wear Track [44] 
- North Carolina State University (NCSU) Wear and Polishing Machine (ASTM E660) 
- Three-Wheel Polishing Device (TWPD) developed by the National Center for Asphalt 

Technology (NCAT) [45] 
- Accelerated wheel tracking chamber [3] 
- Model Mobile Load Simulator (MMLS-3) [6] 
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(a)                                                                           (b) 

 

     
(c)                                                                          (d) 

 

        

 
(e)                                                                   (f) 

Figure 10. Accelerated polishing machine: (a) British polishing wheel, (b) Michigan indoor wear 
track [44], (c) North Carolina State University wear and polishing machine, (d) three-wheel 

polishing device [45], (e) accelerated wheel tracking chamber [3], and (f) model mobile load 
simulator [6]. 

Aggregate polishing is typically conducted using the British polishing wheel (also known as the British 
wheel) according to ASTM D3319. British polishing method is applicable for the curved aggregate 
specimens clamped around the periphery of the wheel assembly to form a continuous strip of aggregate 
particles [35,46]. The wheel is then rotated against a rubber-tire wheel that provides the polishing action. 
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The aggregate specimens are made with uniform sized coarse aggregate particles, which are mounted on 
the curved mold. In order to hold aggregate particles in the mold, bonding materials, such as epoxy resin, 
are poured. The polish-resistant frictional properties of aggregates can be measured using the British 
pendulum test according to ASTM E303.  

The Michigan indoor wear track developed by the Michigan Department of Transportation can 
also be used for measuring the polish resistance of coarse aggregate samples [7,45,47,48]. The circular wear 
track of this device is very large, with a dimeter of 2.1 m (7 ft) and simulates the rolling process of vehicles 
using a full-scale tire in accordance with ASTM E524. This device accommodates 16 trapezoidal 
specimens, which are made with coarse aggregate in the steel molds with binding materials. After the 
polishing process, aggregate friction tests are performed.  

The North Carolina State University (NCSU) Wear and Polishing Machine was developed to 
evaluate changes in skid resistance of aggregates and paving mixtures after wear and polish [45]. As 
specified in ASTM E660, this circular track machine consists of four individually mounted and equally 
spaced wheels. Pneumatic tires used for this machine are nylon smooth tread tires having 138 kPa (20 psi) 
tire pressure with a wheel loading of 320 N. The diameter of the circular track is 914 mm (36 in) and a total 
of 12 equally spaced samples can be tested. After a few hours of polishing, the surface friction of each 
specimen is measured.  

The Three Wheel Polishing Device (TWPD) developed by the National Center for Asphalt 
Technology (NCAT) is designed to simulate wear of the pavement surface [49]. This circular track 
polishing machine could polish the area of testing sample sufficiently large to accommodate the friction 
and texture measurements using a dynamic friction tester and circular texture meter, respectively. The 
NCAT polishing machine consists of a steel frame to which a vertical shaft is attached that holds an 
assembly of three small wheels rotating on a circular track 285 mm (11.2 in.) in diameter. In the test, a 
nominal 50.8–61.0 cm (20–24 in.) square slab has been used [49,50]. TWPD utilizes three pneumatic tires 
made of resin, hard rubber, polyurethane, or steel having a 20-cm (8-in) diameter [29]. During the polishing, 
water is sprayed to wash the abraded rubber particles on the surface of the testing specimen. The applied 
normal load on the wheel can be adjusted by adding/removing circular iron plates on the device’s table. 
This TWPD has been used for assembly of cylindrical samples with a testing ring [51] and aggregate 
samples placed in a circular steel mold [52]. With the use of a testing ring, various pavement surface field 
cores can be tested (please see Figure 11). The drawback of this system lies in the fact that it can polish 
only a small circular area and texture and friction results may be influenced by the positioning of the 
respective devices onto the polished ring. 
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(a)                                                                                        (b) 

 

 
(c) 

Figure 11. Sample preparation for TWPD test: (a) concrete slab [50], (b) cylindrical asphalt 
concrete specimen with a testing ring [51], and (c) preparation of aggregate sample and holding 

this using square mold (MSMT 215). 

An accelerated wheel tracing chamber was used for the simulation of long-term skid resistance of 
600 × 300 × 200 mm concrete specimens [3]. A 60-kg steel wheel (50 mm in width) was repeatedly running 
on the concrete specimen. This simulation was conducted up to 100,000 cycles. This test is also applicable 
for aggregates according to ASTM D3319.  

The Model Mobile Load Simulator also has been used for simulating traffic wearing [6,53]. It is 
commonly used to apply cycles to pavement markings, asphalt cement concrete pavements, and other 
highway materials to determine degradation of skid resistance. The MMLS-3 consists of four rotating axles 
equipped with a pneumatic tire (300 mm in diameter and up to 800 kPa pressure). The load level on each 
tire can vary from 2.1 kN (471 lbf) to 2.7 kN (606 lbf) through adjustment of the suspension system. This 
equipment is capable of applying up to 7,200 cycles per hour. The dimensions of the testing frame are 1.5 
m (60 in.) by 0.3 m (12 in.) by 2.5 cm (about 1 in.) to 12.7 cm (5 in.) height and it can accommodate asphalt 
and concrete slab specimens.  

Because many methods and devices evaluate skid resistance of pavement in their own way, the 
International Friction Index (IFI), a common scale for friction of pavement, is needed based on the 
correlation of different testing methods. Use of the IFI from a measurement of pavement macrotexture was 
explored by the Permanent International Association of Road Congress [54]. In 1992, PIARC conducted 
an international friction and texture harmonization study based on experimental research conducted at 54 
different sites across the United States and Europe including 51 different measurement systems [1,29]. As 
a result of the PIARC experiment, IFI parameters of friction number (F60) and slip speed (SP) are suggested 
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based on a mathematical model. For example, friction and texture values obtained from DFT and CTM can 
be used to calculate the IFI parameters. In accordance with ASTM E1960, the IFI parameters of F60 and 
SP are first computed using the formulas provided in ASTM E1960: 

 
𝑆𝑆𝑃𝑃 = 14.2 + 89.7𝑀𝑀𝑀𝑀𝑀𝑀 

 
𝐹𝐹60 = 𝐴𝐴 + 𝐵𝐵 × 𝐹𝐹𝐹𝐹(𝑆𝑆) × 𝑒𝑒(𝑆𝑆−60)/𝑆𝑆𝑃𝑃 

 
where A = 0.0082 and B = 0.732, which are the coefficient of friction measured by DFT at 20 km/h (ASTM 
E1960), FR(S) is the friction value measured at a speed S, and MPD is the mean profile depth measured by 
CTM.  
 

𝐹𝐹60 = 0.081 + 0.732𝑀𝑀𝐹𝐹𝐷𝐷20𝑒𝑒−40/𝑆𝑆𝑃𝑃 
 
After the IFI F60 and SP are computed, the same formulas using different device constants can be used to 
compute the equivalent friction. To calculate the equivalent skid number (SN) measured by a locked-wheel 
test at different speed using a smooth tire (ASTM E524), the following equation can be used: 
 

𝑆𝑆𝐹𝐹(𝑆𝑆)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ = �
𝐹𝐹60 − 0.045

0.925
×

1
𝑒𝑒(𝑆𝑆−60)/𝑆𝑆𝑃𝑃

� × 100 

Factors Influencing Pavement Friction and Texture 
It was reported that several factors, such as polishing resistance of aggregates, pavement surface texturing 
techniques, and concrete mixture proportion, influence the friction and surface texture of a concrete 
pavement during its lifetime [2,3]. To ensure the adequate level of skid resistance of concrete pavement, 
aggregates having a high polishing resistance are more preferable. It has been known that polishing 
resistance of aggregates can vary depending on their mineralogy. For example, sandstone, granite, and 
gneiss have good initial and long-term skid resistance, while limestone and andesite have shown low 
polishing resistance [3]. The utilization of poor polishing-resistant aggregates is limited in wearing courses 
in the United States. For example, according to Pennsylvania Department of Transportation (PennDOT) 
Bulletin 14 [55], the use of aggregates in the courses is limited depending on the skid resistance level (SRL) 
of aggregates, which is based on types of aggregates: Excellent = sandstone, High = gneisses and granites, 
Good = siliceous limestone, Medium = dolomite, and Low = limestone. Coarse aggregates having excellent 
SRL can be applicable for high wearing courses (average daily traffic > 20,000). Similar specifications can 
be found in other state DOTs. In accordance with Louisiana Standard Specifications [56], the friction rating 
(FR) of aggregates is designated from I (high) to IV (low): FR I and II (e.g., sandstone) can be used for 
general purposes; FR III (e.g., gravel) is not allowed for courses with average daily traffic greater than 
7,000; FR IV (e.g., limestone) is allowable if average daily traffic is less than 2,500. Even though these 
specifications are currently valid for asphalt concrete pavements, the skid resistance of coarse aggregates 
needs to be considered in the design of concrete pavement. With respect to modification of surface texturing 
of concrete pavement, diamond grinding and grooving methods have been applied to enhance smoothness 
and early-age friction of new pavements and to restore surface friction of in-service pavements [57]. 
Diamond grinding removes surface damage and irregularities using closely spaced saw blades. The 
advantages of diamond grinding are improvement of pavement smoothness, reduction of pavement-tire 
noise, and increased skid resistance. Grooving involves cutting the pavement with deeper cuts/grooves that 
serve as water drainage channels and help with prevention of hydroplaning in wet weather. The service life 
of surface treatments is also influenced by the type of aggregates. For example, in a ground and grooved 
concrete pavement that incorporates soft aggregates, the restored frictional properties will be short-lived if 
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the aggregates are exposed. In addition, mixture proportion of concrete pavement is also important due to 
its impact on strength and durability. Appropriate mixture design, with respect to water-to-cementitious 
materials ratio (w/cm), aggregate content, and types and dosages of pozzolans and chemical admixtures is 
developed to ensure concrete performance and to prevent durability problems during the pavement’s 
intended design life. 

Artificial Neural Network 
Neural network-based models simulate the network of neurons in the human brain and are used to solve 
complicated problems. The basic structure of ANN consists of three types of layers: input, hidden, and 
output layers as shown in Figure 12. Depending on the number of hidden layers, the ANN can be classified 
into single- or multi-layer perceptron, which has multi-connected neurons. A neuron serves as a basic 
processing element, also known as a node. When neurons in the input layer receive an input, the weighted 
sums of the inputs are transferred to interconnected neurons in the next hidden layer and evaluated using 
activation functions. The weight and bias values can be updated and optimized in a minimization process 
of prediction error using the back-propagation algorithm. The backpropagation learning is repeated from 
the output layer to the input layer in each running step until there is no further decrease in the mean square 
error (MSE). After the training is completed with updated weight and bias, new inputs from the testing 
dataset are tested in the network to produce the corresponding outputs. The relationship between each 
hidden neuron (h(x)) and the input variables (xi) can be expressed as [58]:  

 
ℎ(𝑥𝑥) = 𝑓𝑓ℎ(𝑏𝑏𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖) 

 
where fh represents activation function and bi and wi are bias and weights, respectively. The sigmoidal 
function is commonly used as a nonlinear activation function in hidden layers. The equation of tangent 
sigmodal function can be expressed as:  
 

𝑓𝑓ℎ �𝑏𝑏𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖� =
2

(1 + 𝑒𝑒−2(𝑏𝑏𝑖𝑖+∑𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖)
− 1 

 
The predicted value, output (P), can be obtained: 
 

𝑀𝑀 = 𝑓𝑓0(𝑏𝑏𝑗𝑗 + �ℎ𝑗𝑗𝑤𝑤𝑗𝑗 
 

where activation function (f0) is typically a linear activation function.  
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Figure 12. Schematic diagram of an ANN model [12]. 

To evaluate the reliability of the ANN model, various statistical metrics can be utilized. The mean 
square error, root mean square error (RMSE), mean absolute percentage error (MAE), and correlation 
coefficient (R) can be calculated as follows: 
 

𝑀𝑀𝑆𝑆𝑀𝑀 =
∑ (𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀 =  �
∑ (𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

𝑀𝑀𝐴𝐴𝑀𝑀 =
1
𝑛𝑛
��

𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖
𝐴𝐴𝑖𝑖

� × 100%
𝑛𝑛

𝑖𝑖=1

 

 
where n is the total number of specimens in the dataset, Pi is the predicted value, Ai is the target values, iP  
is the mean prediction, and iA  is the mean target value.  
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C H A P T E R  2  

Methodology 

OUTLINE 
The ANN-based model for predicting frictional properties of concrete pavements was conducted as follows 
(see Figure 13): (1) data collection from literature; (2) evaluation of the prediction accuracies of the ANN 
model; and (3) calculation of the IFI friction and estimation of the long-term skid number beyond the testing 
ranges reported in the literature (i.e., extrapolation) as well as prediction of the terminal skid number.  
 

 
Figure 13. Outline of proposed ML-based prediction model for frictional properties of  

concrete pavements. 

The development of the ANN model in this study was achieved as follows: (1) randomly splitting 
of the database into 80% of the data points for training and the remaining 20% for testing; (2) dividing the 
training dataset into 5 uniform-sized subsets (4 for training set and 1 for validation set); (3) training the 
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ANN model using the 4 training subsets and adopting a weight and bias when the model shows the highest 
accuracy for the validation set; (4) repeating step 3 five times and evaluating the model’s performance using 
a different validation subset each time; and (5) evaluating final prediction accuracy for testing data with the 
ANN model that has the highest performance in step 4. It should be noted that the ANN model employed 
the Levenberg-Marquardt optimization method for adjusting the weight and bias for the network training. 
This algorithm is a combination of the steepest descent algorithm and the Gauss-newton algorithm [59]. 
The Levenberg-Marquardt algorithm is widely used due to its fast and stable performance compared to the 
conventionally used scaled conjugate gradient method.  

ESTABLISHMENT OF DATABASE FOR THE ANN MODEL 
Because accurate and reliable prediction using the ANN model is highly dependent on the size and quality 
of the data, establishment of the proper database is an important step in the development of the ANN model. 
The literature data were collected from three sources [6,29,50] that experimentally investigated the effect 
of aggregate types on the long-term frictional properties of “plain textured” and “ground and grooved” 
concrete slabs that were subjected to accelerated polishing in laboratories. These data were labeled as 
Dataset 1 (from [6]), Dataset 2 (from [50]), and Dataset 3 (from [29]). Depending on the composition of 
aggregates, the coarse and fine aggregates were categorized: limestone (LS), natural gravel (GV), granite 
(GR), dolomite (DM), natural sand (NS), and unknown (UKN). This is because aggregate mineralogy 
impacts its polishing resistance and the proposed aggregate classification can improve the generality of the 
ANN model.  

The information of Datasets 1–3 used in this study are summarized in Table 1. Dataset 1 provides 
the results of long-term friction and texture measurements of plain surface concrete that was finished by 
hand trowel. A total of 9 concrete mixtures incorporating 5 coarse aggregates (3 limestone, 1 sandstone, 
and 1 granite) and 1 fine aggregate were used. The type of fine aggregate was not provided and was 
designated as unknown in the ANN model. Concrete mixtures contained 18% of fly ash and their w/cm 
were fixed at 0.40. Concrete slabs (61.0 × 66.0 × 12.7 cm3) were cast and cured at least 28 days. The 
MMLS03 accelerated polishing machine was used to simulate the wear and abrasion of the pavement 
caused by traffic load. The measurements of friction (via DFT at 20km/h) and texture (via CTM) were 
conducted after a specific number of polishing cycles in the range of 0 to 360K. A total of 90 data for each 
DFT20 and CTM were collected. 
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Table 1. Summary of literature datasets used in this study. 

* DFT60 means DFT value at 60 km/h. This is converted to DFT20 using linear equation. 
 

Datasets 2 and 3 were collected from the ground and grooved concrete slabs. In Dataset 2, a total 
of 9 concrete mixtures incorporating 3 coarse aggregates (1 granite and 2 limestones) and 1 siliceous river 
sand with w/cm=0.45 were tested. 96 concrete slabs (50.8 × 50.8 × 8.9 cm3) were cast. One plain surface 
concrete slab and 5 ground and grooved slabs with different surface treatments were made from each 
mixture. Details of the surface texture in terms of depth, spacer, and blade thickness used for grinding and 
grooving of these slabs are provided in Table 2. In Dataset 2, 363 data for DFT60 and 75 data for CTM 
were collected. Dataset 3 includes 5 concrete mixtures having w/cm=0.42. These concretes incorporated 4 
different coarse aggregates (1 gravel, 1 dolomite, and 2 limestones) and 4 fine aggregates (2 siliceous 
natural sands and 2 limestone sands). Thirty concrete slabs (50.8 × 50.8 × 8.9 cm3) were cast and cured at 
least 28 days. Four different combinations of spacers, gaps (blade thickness), and depths of grinding and 
grooving were applied to each concrete mixture (Table 2). Dataset 3 has 100 data for each DFT20 and 
CTM. After the surface treatment, TWPD developed by NCAT was used for accelerated polishing of slabs 
in Datasets 2 and 3. These slabs were polished up to 160,000 cycles while DFT and CTM data were 
collected at a specific number of polishing cycles. 
  

Label Label 
Type of Concrete 

Dataset 1 
(plain concrete) 

[6] 

Type of Concrete 
Dataset 2 

(ground and 
grooved concrete) 

[50] 

Type of Concrete 
Dataset 3 

(ground and 
grooved concrete) 

[29] 

Sample 
Number of 
concrete 
mixtures 

9 9 5 

Sample 
Slab 

dimension
s 

61.0 × 66.0 × 12.7 
cm3 

(24 × 26 × 5 in3) 

50.8 × 50.8 × 8.9 cm3 
(20 × 20 × 3.5 in3) 

50.8 × 50.8 × 8.9 cm3 
(20 × 20 × 3.5 in3) 

Sample Surface 
condition Plain surface 5 different 

grinding/grooving  
4 different 

grinding/grooving  

Accelerated 
polishing 

equipment 
 Model Mobile Load 

Simulator (MMLS3) 

Three-wheel 
polishing device 

(TWPD) 

Three-wheel 
polishing device 

(TWPD) 

Friction/ 
texture 
tests 

DFT  
DFT20 

at 0, 60K, 120K, 
240K, and 360K 
polishing cycles 

DFT60* 
at 10K, 40K, 100K, 
and 160K polishing 

cycles 

DFT20 
at 0, 5K, 40K, 100K, 
and 160K polishing 

cycles 

Friction/ 
texture 
tests 

CTM  
CTM 

at 0, 60K, 120K, 
240K, and 360K 
polishing cycles 

CTM  
at 160K 

CTM 
at 0, 5K, 40K, 100K, 
and 160K polishing 

cycles 



 21 r3utc.psu.edu 

Table 2. Characteristics of grinding and grooving applied for concrete pavement. 

Label Label 
Grinding 

(cm) 
Spacer 

Grinding 
(cm) 

Blade 
Thickness 

Grinding 
(cm) 

Depth 

Grooving 
(cm) 

Spacer 

Grooving 
(cm) 

Blade 
Thickness 

Grooving 
(cm) 

Depth 

Dataset 2 (GC1–9) GC#-1 - - - - - - 
Dataset 2 (GC1–9) GC#-2 0.279 0.318 0.635 - - - 
Dataset 2 (GC1–9) GC#-3 0.279 0.318 0.635 1.600 0.318 0.318 
Dataset 2 (GC1–9) GC#-4 0.330 0.318 0.635 - - - 
Dataset 2 (GC1–9) GC#-5 0.330 0.318 0.635 1.600 0.318 0.318 
Dataset 2 (GC1–9) GC#-6 0.102 0.318 0.076 1.143 0.318 0.318 

Dataset 3 (GC10–14) GC#-1 0.330 0.318 0.318 - - - 
 GC#-2 0.279 0.318 0.318 - - - 
 GC#-3 0.076 0.076 0.159 - - - 
 GC#-4 0.076 0.076 0.159 1.588 0.318 0.318 

 
More details on the mixture proportions of concretes in Datasets 1 through 3 are provided in Table 

3. It should be noted that mixture proportion for every concrete in the units of kg/m3 was calculated using 
specific gravity values for different concrete constituents when they were provided. Otherwise, the specific 
gravities were assumed as: 1.00 for water, 3.15 for portland cement, 2.50 for fly ash, 2.60 for coarse 
aggregate, 2.60 for fine aggregate, 1.18 for air-entraining agent (AE), and 1.35 for water-reducing agent 
(WR) [60]. 
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Table 3. Mixture proportions (kg/m3) for plain concrete [6,29,50]. 

Label w/cm Water Cement Fly Ash 
Coarse 

Agg. 
 

LS 

Coarse 
Agg. 

 
GV 

Coarse 
Agg. 

 
SS 

Coarse 
Agg. 

 
GR 

Coarse 
Agg. 

 
DM 

Fine 
Agg. 

 
UKN 

Fine 
Agg. 

 
NS 

Fine 
Agg. 

 
LS 

AE WR 

PC1 0.40  147  312  55  1,198  0  0  0  0  704  0 0 0.62  0.95  
PC2 0.40  147  312  55  838  0  359  0  0  704  0 0 0.62  0.95  
PC3 0.40  147  312  55  359  0  838  0  0  704  0 0 0.62  0.95  
PC4 0.40  147  312  55  838  359  0  0  0  704  0 0 0.62  0.95  
PC5 0.40  147  312  55  359  838  0  0  0  704  0 0 0.62  0.95  
PC6 0.40  147  312  55  570  0  0  0  0  1,331  0 0 0.83  1.18  
PC7 0.40  147  312  55  1,331  0  0  0  0  570  0 0 0.83  0.94  
PC8 0.40  147  312  55  1,198  0  0  0  0  703  0 0 0.83  0.94  
PC9 0.40  147  312  55  1,197  0  0  0  0  703  0 0 0.83  1.09  
GC1* 0.45  151  335  0  0  0  0  872  0  0  1,060  0  0.02  0.63  
GC2* 0.45  151  335  0  872  0  0  0  0  0  1,060  0  0.02  0.63  
GC3* 0.45  151  335  0  872  0  0  0  0  0  1,060  0  0.02  0.63  
GC4* 0.45  151  335  0  654  0  0  218  0  0  1,060  0  0.02  0.63  
GC5* 0.45  151  335  0  654  0  0  218  0  0  1,060  0  0.02  0.63  
GC6* 0.45  151  335  0  436  0  0  436  0  0  1,060  0  0.02  0.63  
GC7* 0.45  151  335  0  436  0  0  436  0  0  1,060  0  0.02  0.63  
GC8* 0.45  151  335  0  218  0  0  654  0  0  1,060  0  0.02  0.63  
GC9* 0.45  151  335  0  218  0  0  654  0  0  1,060  0  0.02  0.63  
GC10

§ 0.42  142  338  0  0  1,178  0  0  0  0  709  0  0.00  0.00  

GC11
§ 0.42  142  338  0  0  0  0  0  1279  0  709  0  0.00  0.00  

GC12
§ 0.42  142  338  0  1,205  0  0  0  0  0  714  0  0.00  0.00  

GC13
§ 0.42  142  338  0  1,205  0  0  0  0  0  0  690  0.00  0.00  

GC14
§ 0.42  142  338  0  1,219  0  0  0  0  0  0  698  0.00  0.00  

Aggregates: LS (Limestone), GV (Natural gravel), SS (Sandstone), GR (Granite), DM (Dolomite), UKN (Unknown), NS (Siliceous natural sand). 
*Five different surface treatments were applied for each mixture (see Table 2). 
§Four different surface treatments were applied for each mixture (see Table 2).
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The detailed information of DFT and CTM collected from the literature is summarized in Figure 
14 through Figure 19. The result of DFT60 (DFT at 60 km/h) obtained from Dataset 2 was converted into 
DFT20 for the calculation of IFI friction. This is because the results of DFT20 and CTM are needed to 
calculate IFI friction at 60 km/h (F60) and slip speed (Sp), which are beneficial for the normalization of 
friction measurements with different equipment to a common calibrated index in accordance with ASTM 
E1960-07. For this purpose, equivalent DFT20 in Dataset 2 was estimated using the linear relationship in 
Figure 20 (DFT20 = 0.9414 × DFT60), which was calculated by referring to the results from [29]. 
 

   
Figure 14. DFT20 of plain concrete at 0–360k polishing (Dataset 1: PC1–9). 

   
Figure 15. CTM of plain concrete at 0–360k polishing (Dataset 1: PC1–9). 
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Figure 16. DFT20 of ground/grooved concrete at 10k–160 k polishing (Dataset 2: GC1–9). 

   
Figure 17. CTM of ground/grooved concrete at 160k polishing (Dataset 2: GC1–9). 
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Figure 18. DFT20 of ground/grooved concrete at 0k–160 k polishing (Dataset 3: GC10–14). 

 

 
 

 
Figure 19. CTM of ground/grooved concrete at 0–160k polishing (Dataset 3: GC10–14). 
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Figure 20. Linear relationship between DFT60 and DFT20. 

Based on the developed database, 21 inputs and 2 outputs were selected for the ANN model. These 
are listed in Table 4. Mixture proportions of concrete, characteristics of concrete surface, and number of 
accelerated polishing cycles were used as input parameters due to their significant effects on the frictional 
properties of pavement. Friction (DFT20) and texture (CTM) at a given number of polishing cycles were 
designated as outputs. Because of different number of data points for DFT20 (553) and CTM (265), two 
separate ANN models were developed, one for each output.  

Table 4. Inputs and outputs used for the ANN model. 
 Parameters 

Inputs 

Mixture proportion parameters (14): 
w/cm; water content (kg/m3); portland cement content (kg/m3); fly ash content 
(kg/m3); coarse aggregates type (LS, GV, SS, GR, and DM); fine aggregates type 
(LS, NS, and UKN); air-entraining agent; water-reducing agent. 
Grinding and grooving parameters (6):  
Spacer, blade thickness, and depth of grinding; Same information for grooving.  
Number of polishing cycles (1) 

Outputs DFT20; CTM 
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C H A P T E R  3  

Findings 

DETERMINATION OF ANN STRUCTURE 
To prevent overfitting and underfitting and improve accuracy, the structure of ANN should be carefully 
selected in terms of the numbers of hidden layers and hidden neurons. There is no general method to 
determine suitable numbers of hidden layers and neurons. Most practical problems do not involve a large 
number of hidden layers, so use of the ANN model is not needed, thus avoiding a significant increase in 
computational cost. With respect to hidden neurons, the number of neurons usually less than the number of 
input variables. Therefore, in the preliminary tests to determine the ANN structure, the ANN models having 
1–3 hidden layers and 1–10 neurons were tested. The input and output parameters used for the preliminary 
tests are provided in Table 4. To improve the reliability of the results, the inner 5-fold cross validation was 
applied. Details of the computing resources used for the analysis are as follows: Intel(R) Core i5-9400 CPU 
(2.9 GHz) and 16 GB RAM. 

The prediction errors of the ANN model having different numbers of hidden layers and neurons 
are provided in Table 5 and Table 6. The ANN model with 1 hidden layer and 4 hidden neurons shows the 
lowest MAE for DFT20 (7.6%) and CTM (12.2%). This model also had a low level of RMSE for DFT20 
(0.044) and CTM (0.15). Thus, the ANN model having 1 hidden layer and 4 hidden neurons was selected 
for further analysis. It should be noted that, based on the preliminary analysis of the results, the choice of 
polishing device had a small impact on the prediction accuracy of the ANN model, whereas that of the 
number of polishing cycles was more dominant.  
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Table 5. Evaluation of prediction error for DFT20 depending on the numbers of hidden layers and hidden neurons.   
MAE Hidden neurons 1 2 3 4 5 6 7 8 9 10 

Hidden layers 1 9.1% 8.1% 8.2% 7.6% 7.8% 7.9% 7.8% 7.7% 7.9% 8.0% 
Hidden layers 2 10.2% 8.1% 7.8% 8.0% 7.8% 8.0% 7.8% 7.8% 8.2% 7.8% 
Hidden layers 3 8.8% 8.3% 8.1% 7.9% 8.5% 7.8% 8.1% 8.3% 7.9% 7.9% 

RMSE Hidden neurons 1 2 3 4 5 6 7 8 9 10 
Hidden layers 1 0.052  0.048  0.048  0.044  0.046  0.045  0.045  0.046  0.046  0.045  
Hidden layers 2 0.058  0.048  0.046  0.046  0.045  0.046  0.045  0.047  0.047  0.046  
Hidden layers 3 0.051  0.049  0.048  0.047  0.049  0.045  0.047  0.048  0.045  0.045  

Table 6. Evaluation of prediction error for CTM depending on the numbers of hidden layers and hidden neurons. 
MAE Hidden neurons 1 2 3 4 5 6 7 8 9 10 

Hidden layers 1 18.7% 15.7% 12.5% 12.2% 13.1% 13.5% 12.9% 13.5% 13.0% 14.2% 
Hidden layers 2 16.4% 14.6% 13.6% 13.1% 12.3% 13.1% 12.8% 12.9% 12.5% 14.3% 
Hidden layers 3 16.4% 15.3% 15.0% 13.2% 13.2% 12.3% 12.4% 13.8% 12.5% 14.5% 

RMSE Hidden neurons 1 2 3 4 5 6 7 8 9 10 
Hidden layers 1 0.19  0.17  0.15  0.15  0.16  0.16  0.16  0.16  0.16  0.15  
Hidden layers 2 0.18  0.16  0.16  0.15  0.16  0.16  0.16  0.16  0.16  0.16  
Hidden layers 3 0.17  0.17  0.16  0.16  0.16  0.16  0.15  0.16  0.16  0.16  
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ANN-BASED PREDICTION RESULTS 

Prediction of Friction and Texture using the ANN Model 
Using the ANN architecture selected from the previous section, the ANN-based prediction showed high 
prediction accuracies for DFT20 and CTM. As shown in Figure 21, the correlation coefficients (R) for 
DFT20 and CTM are 0.90893 and 0.96335, respectively. The MAEs for DFT20 and CTM are 6.0% and 
11.7%, respectively (see Table 7). The RMSEs of DFT20 and CTM are 0.42 and 0.99. The high prediction 
accuracy for DFT20 indicated that the relationship of concrete constituents, polishing, and characteristics 
of surface treatment with DFT20 is better than that with CTM. This might be attributable to different 
polishing resistances of cementitious matrix and aggregates, which can be also observed in asphalt concrete 
pavement [61].  
 

   
(a)                                                                                 (b) 

Figure 21. Prediction results using ANN: (a) DFT20 and (b) CTM. 

Table 7. MAE and RMSE of DFT20 and CTM. 
Tests MAE MAE RMSE RMSE 

 Avg. validation Test Avg. validation Test 
DFT20 7.6% 6.0% 0.044 0.039 
CTM 12.2% 11.7% 0.15 0.22 

Sensitivity Analysis 
The relative importance of input variables was studied through a sensitivity analysis for the ANN model. 
As a sensitivity analysis, weight analysis can be employed to explain the relationship between input 
variables and output variables in the ANN model. The weight analysis computes the strength of the 
connections between the input factors and the output factors quantitatively [62,63]. The percentages of the 
influence of input variable on the output value, Qik, can be expressed as  
 

𝑄𝑄𝑖𝑖𝑖𝑖(%) =
∑ ((�𝑤𝑤𝑖𝑖𝑗𝑗�/∑ �𝑤𝑤𝑖𝑖𝑗𝑗� ∙ �𝑣𝑣𝑗𝑗𝑖𝑖�𝑀𝑀

𝑖𝑖=1 )𝑁𝑁
𝑗𝑗=1

∑ (∑ ((�𝑤𝑤𝑖𝑖𝑗𝑗�/∑ �𝑤𝑤𝑖𝑖𝑗𝑗�) ∙ �𝑣𝑣𝑗𝑗𝑖𝑖�)𝑀𝑀
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 )𝑀𝑀

𝑖𝑖=1
× 100% 

 
where wij represents the weights between the input neuron i and the hidden neuron j, and jkν  represents 
the weights between the hidden neuron j and the output neuron k. The ANN structure used in this study had 
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1 hidden layer and 4 neurons. The numbers of inputs and outputs are 21 and 1, respectively. The 
contributions of each input on the output of DFT20 and CTM are provided in Figure 22. The influences of 
inputs on DFT20 and CTM were similar. Meanwhile, it was found that polishing cycles highly influenced 
the prediction of CTM.  
 

 
Figure 22. Contribution of input parameters on DFT20 and CTM  

(Grind- or Groove- S, G, and D means spacer, gap, and depth, respectively). 

IFI Friction and Skid Number  
Using predicted DFT and CTM values, the IFI of friction parameters at 60 km/h (F60) and slip speed (Sp) 
were calculated. To compare and normalize texture and friction measured by different devices, PIARC 
performed international experiments in 1992 from 16 countries [23,54]. The tests using a total of 51 
different measurement systems were conducted at 54 sites. Various types of friction testing equipment, such 
as locked-wheel, fixed slip, side force, and British pendulum test, were used. Surface texture of pavement 
was measured by the volumetric sand patch, laser profilometers, optical system, and outflow meters.  

These IFI friction parameters of Sp and F60 can be computed in accordance with ASTM E1960-
07. The slip speed in a unit of km/h is determined from the mean profile depth (MPD) obtained from CTM 
in a unit of mm as follows:  
 

𝑆𝑆𝑝𝑝 = 14.2 + 89.7𝑀𝑀𝑀𝑀𝑀𝑀 
 

Friction (FR) measured by a device on wet pavement at a given speed (S) and Sp can be used for calculating 
FR at 60 km/h using the following relationship: 
 

𝐹𝐹𝐹𝐹60 = 𝐹𝐹𝐹𝐹(𝑆𝑆) ∙ 𝑒𝑒
𝑆𝑆−60
𝑆𝑆𝑝𝑝  
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where FR60 represents adjusted value of FR at 60 km/h and FR(S) represents friction value at speed of S. 
The linear relationship between IFI F60 and FR60 can be expressed as: 
 

𝐹𝐹60 = 𝐴𝐴 + 𝐵𝐵 ∙ 𝐹𝐹𝐹𝐹60 
 

where A and B are calibrated constants. Combining the Eqs. 10 and 11, F60 can be expressed with respect 
to the FR and Sp: 
 

𝐹𝐹60 = 𝐴𝐴 + 𝐵𝐵 ∙ 𝐹𝐹𝐹𝐹(𝑆𝑆) ∙ 𝑒𝑒
𝑆𝑆−60
𝑆𝑆𝑝𝑝  

 
The coefficients of A and B are 0.0082 and 0.732 for the DFT20 as provided in ASTM E1960-07. Then, 
IFI F60 can be calculated as follows:  
 

𝐹𝐹60 = 0.081 + 0.732 ∙ 𝑀𝑀𝐹𝐹𝐷𝐷20 ∙ 𝑒𝑒
−40𝑆𝑆𝑝𝑝  

 
IFI F60 and Sp are also used for calculating equivalent friction obtained from different devices. In 

this study, predicted results were normalized based on the locked-wheel skid trailer method [64], which is 
known as the widely used method for measuring pavement friction in the United States in accordance with 
ASTM E 274/274M-15. The equivalent skid number (FR65) measured by a locked-wheel skid trailer at 65 
km/h (~40 mph) using a smooth tire in accordance with ASTM E524-08 can be computed using the 
following formula:  
 

𝐹𝐹𝐹𝐹65𝑆𝑆 =
𝐹𝐹60 − 𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼
1

𝑒𝑒
5
𝑆𝑆𝑝𝑝

 

 
where FR65S indicates results of FR65 using a smooth tire and coefficients of AIFI and BIFI are equal to 
0.045 and 0.925, respectively [6,29,54]. Note that skid number at 65 km/h (SN65S) is equal to the friction 
FR65S multiplied by 100.  

A high prediction accuracy for SN65S was observed as shown in Figure 23. Using the selected 
weight and bias, the prediction of SN65S for all concrete mixtures was conducted. Target and predicted 
SN65S were calculated using target and predicted IFI parameters. Note that predicted IFI parameters were 
calculated using predicted DFT20 and CTM. The average MAE for SN65S was 7.2%, which means that the 
ANN model provides accurate predictions for frictional properties based on the information of concrete 
constituents, surface treatment, and polishing cycles. In the Data 2, target SN65S of GC1-5, GC2-2, GC4-
3, and GC5-4 were not provided due to the lack of their CTM values. Even though their exact values (target) 
were unknown, their CTM as well as SN65S can be estimated using the ANN model. Predicted SN65S for 
GC1-5, GC2-2, GC4-3, and GC5-4 are 30.6, 27.4, 31.6, and 24.4, respectively.  

Prediction of Long-term Skid Number 
Based on the prediction results provided in the previous section, the long-term frictional properties of plain 
and ground and grooved concrete, up to 500K polishing cycles, were estimated. This extrapolation process 
can reduce the cost, time, and resources for the additional experimental work. In this section, comparative 
analysis of the ANN-based prediction and experimental results-based regression was performed to prove 
the high performance of the ANN model. The ANN-based prediction was conducted by increasing the 
number of polishing cycles. For the results-based regression, which has also been used for estimating the 
friction of pavement [65], power law equation was adopted: y = (x/a)1/b. The coefficients used for this 
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equation are provided in Table 8. It should be noted that PC and GC means plain and ground and grooved 
concrete, respectively. The results of SN65S using two different methods are provided in Figure 24 and 
Figure 25. The ANN-based prediction results showed a better agreement than the regression curve, which 
might be attributed by the consideration of various kinds of inputs, which can influence the frictional 
properties. It should be noted that the results from Data 2 were not analyzed due to the lack of CTM at 
different polishing cycles (only CTM at 160k is provided from the literature). 
 

 
Figure 23. Prediction results for the skid number at 65 km/h (SN65S). 

Table 8. Coefficients for power-law regression model. 
Samples Coefficient Coefficient Samples Coefficient Coefficient 

 a b  a b 
PC1 3.817·108 -0.489 GC11-3 1.026·108 -0.286 
PC2 3.476·108 -0.487 GC11-4 2.792·1011 -0.445 
PC3 4.595·107 -0.380 GC12-1 5.104·1010 -0.506 
PC4 3.652·106 -0.187 GC12-2 3.684·108 -0.310 
PC5 4.432·108 -0.386 GC12-3 2.399·108 -0.364 
PC6 1.662·1010 -0.413 GC12-4 4.307·108 -0.295 
PC7 1.289·107 -0.317 GC13-1 3.701·107 -0.217 
PC8 6.589·106 -0.227 GC13-2 1.177·107 -0.198 
PC9 1.552·109 -0.633 GC13-3 3.557·108 -0.355 

GC10-1 5.436·109 -0.303 GC13-4 6.883·109 -0.390 
GC10-2 1.045·109 -0.256 GC14-1 4.372·106 -0.145 
GC10-3 4.332·109 -0.425 GC14-2 5.082·1010 -0.540 
GC10-4 2.155·1012 -0.506 GC14-3 6.377·109 -0.520 
GC11-1 8.070·108 -0.279 GC14-3 2.531·108 -0.286 
GC11-2 3.741·108 -0.298    
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PC1                                                     PC2                                                  PC3 
 

 
PC4                                                     PC5                                                 PC6 
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Figure 24. Predicted long-term frictional properties of plain concrete pavement. 
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Figure 25. Predicted long-term frictional properties of ground/grooved concrete pavement. 

Estimation of Terminal Friction 
With the use of ANN-based predictions of long-term frictional properties of concrete pavement, 

the terminal friction value can be estimated. Change of friction of concrete pavement as a function of 
polishing can be plotted, as can be seen in Figure 26. It should be noted that friction degradation of concrete 
pavement can be varied depending on the characteristics of the concrete pavement (e.g., concrete 
constituents, grinding, etc.). The adequate friction level is maintained or sometimes increased after 
construction (Stage1). A slight increase of friction number was observed in diamond-ground concrete 
pavement (US-50) provided in [57]. Meanwhile, Stage 1 is not observed in some concrete pavements (e.g., 
diamond-ground concrete pavement (US-24) [57], various types of surface textured concrete pavements 
[66], and experimental results from [6,29,50]). These concrete pavements showed friction loss as the degree 
of polishing increased (Stage 2). After a significant friction loss caused by polishing, the friction value is 
maintained, as can be seen in the friction stabilization zone (Stage 3). In this stage, the friction is very 
slowly decreased regardless of additional polishing or weathering condition. As specified, the rate of 
friction loss and terminal friction are highly related to the polishing resistance properties of cementitious 
matrix and aggregates. Therefore, the ANN-based model, which can characterize the relationship of 
concrete constituents and polishing with frictional properties, is suitable for estimating terminal friction of 
plain and ground and grooved concrete.  
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Figure 26. Lifecycle of pavement depending on degree of polishing [65]. 

To determine terminal friction of concrete pavement, the analysis of normalized standard deviation 
(STD) of SN65S was performed. The STD value of 5 neighboring SN65S as a function of polishing cycles 
was first calculated using the following equation:  

 

𝑆𝑆𝐷𝐷𝑀𝑀 =  �
1

𝐹𝐹 − 1
� |𝐴𝐴𝑖𝑖 − 𝐴𝐴𝚤𝚤� |2

𝑁𝑁

𝑖𝑖=1
 

 
where N is equal to number of testing neighbors, Ai represent SN65S, and iA  represents the mean of Ai. For 
example, the STD of SN65S at 100k can be obtained from SN65S in a range of 80k–120k. Here, the interval 
of polishing is equal to 10k. Subsequently, the normalization for STD was employed to minimize the effect 
of high or low level of SN65S. To determine the plateau value (terminal friction), the appropriate threshold 
of the normalized STD should be selected. In this study, the normalized STD of 0.05 was selected as a 
threshold due to a small decrease in the ratio of neighboring normalized STD, less than 5%. As can be seen 
in Figure 27 (sample of GC14-4), the variation of normalized STD in the red area (Stage 3 - friction 
stabilization zone) is very small.  
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Figure 27. Determination of polishing cycles in a plateau of normalized STD of GC14-4’s SN65S to 

identify terminal SN65S. 

Using the ANN model, the terminal friction value and polishing cycles are identified as provided 
in Table 9. In a comparison to the skid numbers at the final polishing cycles from the Data 1–3, the 
difference is as small as 4.7%. It is expected that this reliable and robust method can also be applicable for 
evaluating terminal friction of pavements.  

Concrete pavement having a high terminal friction is recommended to prevent traffic accidents. It 
was reported that the skid number of pavements measured by locked-wheel test with a smooth tire should 
be higher than 20 or 23 for preventing car accidents caused by low-level skid resistance [67]. The applicable 
concrete mixtures that satisfy this recommendation are as follows. In the case of plain concrete, PC6 had 
terminal friction of 27.7. This mixture had a relatively higher ratio of fine aggregate (70% UKN) to coarse 
aggregate (30% LS). Most of the ground and grooved concrete samples showed a high terminal skid 
number, which satisfied the recommendation. Even though GC13-3 and GC14-3 showed relatively low 
skid numbers compared to other samples, their terminal frictions were very close to the recommendation. 
The relatively low friction of GC13 and GC14 series might be attributable to the use of coarse and fine 
limestone aggregates, which have poor polishing resistance properties. Similarly, plain concrete 
incorporating coarse limestone aggregates generally showed low terminal friction. Furthermore, the third 
grinding method of Data 3 (spacer = 0.076 cm, blade thickness = 0.06 cm, depth = 0.159 cm) should be 
avoided due to its relatively poor enhancement of initial and terminal frictions. Based on these analyses, 
grooved concrete pavement that incorporates natural gravel and natural sand is recommended for long-term 
polishing-resistant concrete pavement.  
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Table 9. The ANN-based estimation of terminal friction of plain and ground and grooved concrete. 
Samples Measuremt Measuremt ANN ANN Samples Measuremt Measuremt ANN ANN 

 Initial 
SN65S* 

Final 
SN65S** 

Terminal 
SN65S 

Polishing 
cycles  Initial 

SN65S* 
Final 

SN65S** 
Terminal 

SN65S 
Polishing 

cycles 
PC1 21.1 14.2 15.6 140k GC11-3 33.1 22.5 23.4 230k 
PC2 20.8 14.1 14.8 140k GC11-4 42.0 32.2 29.7 280k 
PC3 21.3 13.8 14.2 110k GC12-1 46.2 25.5 26.6 130k 
PC4 20.1 16.7 14.6 260k GC12-2 49.5 24.9 24.9 120k 
PC5 28.1 19.1 16.4 450k GC12-3 28.6 21.3 21.5 140k 
PC6 35.9 26.4 27.7 220k GC12-4 36.6 27.3 27.5 150k 
PC7 20.3 12.5 13.0 230k GC13-1 42.4 25.0 24.5 200k 
PC8 22.7 15.4 14.6 240k GC13-2 42.9 23.1 22.8 150k 
PC9 20.5 13.6 14.2 300k GC13-3 31.2 21.6 20.0 260k 

GC10-1 51.6 34.3 35.9 100k GC13-4 41.3 27.5 27.4 180k 
GC10-2 46.7 34.2 34.8 100k GC14-1 48.4 22.6 25.2 180k 
GC10-3 35.2 24.2 25.8 110k GC14-2 40.1 23.6 23.3 140k 
GC10-4 39.7 32.4 32.1 120k GC14-3 27.8 20.3 20.4 240k 
GC11-1 50.4 30.6 30.0 140k GC14-4 34.8 25.6 27.6 170k 
GC11-2 42.0 26.1 27.3 130k      
*: SN65S at 0k for plain concrete and at 10k for ground and grooved concrete provided in [6]. 
**: SN65S at 360k for plain concrete and at 160k for ground and grooved concrete provided in [29]. 
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C H A P T E R  4  

Conclusions 

The adequate long-term frictional properties of concrete pavement are crucial for ensuring the 
safety of drivers. Experimental studies have identified several factors influencing pavement friction, 
including concrete mixture proportion, types of aggregates, degree of pavement polishing, and surface 
texturing techniques. However, conventional linear and non-linear regression models are not appropriate to 
analyze the complex relationship between these factors and concrete pavement friction. Therefore, this 
study adopted the use of the ANN model to predict and estimate long-term frictional properties of plain and 
ground/grooved concrete pavement. The following conclusions can be drawn for the ANN-based model for 
concrete pavement.  

 
 To train the ANN-based model, data of plain and ground/grooved concrete mixture proportion, 

degree of polishing, types of aggregates, characteristics of grinding and grooving, friction (DFT), 
and texture (CTM) were collected. Using 553 DFT and 265 CTM data, the ANN model was 
developed, which showed good prediction results. 

 
 The ANN model used for the prediction of DFT and CTM has 1 hidden layer and 4 hidden neurons, 

which was determined based on a preliminary test. This ANN model showed 6.0% and 11.7% 
error for DFT and CTM, respectively.  

 
 Using the ANN model, the long-term frictional properties of concrete pavement beyond the 

accelerated testing ranges provided in the literature were estimated. In a comparison to a regression 
model, the ANN model showed better agreement.  

 
 The terminal friction of concrete pavement was evaluated based on predicted long-term friction. 

With the use of a normalized STD method proposed by this research, the terminal friction of 
concrete pavement can be calculated. Based on this result, concrete pavement having a high long-
term friction can be identified.  
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